|المؤستسة المامة للتمليم الفني والتدريبالمهني الإدارة العامة لتصنييم وتطوير المنـاهج

إلكترونيـات صنـاعية وتدكم

إلكترونيات القوى (عملي)

ك| Y Y

مقدمة

الحمد للّه وحده، والصـلاة والسـلام على من لا نبي بعده، محمد وعلى آله وصحبه، وبعد:
تسعى المؤسسة العامة للتعليم الفني والتدريب المهني لتأهيل الكوادر الوطنية المدربة القادرة على شغل الوظائف التقنية والفنية والمهنية المتوفرة پوْ سوق العمل، ويأتي هذا الاهتمام نتيـِّة للتوجهات
 وعلى قوة شبابه المسلح بالعلم والإيمان مِن أجل الاستمرار قدما پٌِ دفِ عجلة التقدم التتموي، لتصل بعون

الله تعالى لمصاف الدول المتقدمة صناعياً.
وقد خطت الإدارة العامة لتصميم وتطوير المناهج خطوة إيجابية تتفق مع التجارب الدولية المتقدمة

 العمل والمؤسسة العامة للتعليم الفني والتدريب المهني بحيث تتوافق الرؤية العلمية مع الواقع العملي الذي تفرضه متطلبات سوق العمل، لتخرج هذه اللجان پٌ النهاية بنظرة متكاملة لبرنامج تدريبي أكثر التصاقاً بسوق العمل، وأكثر واقعية يٌٌ تحقيق متطلباته الأسـاسية.

وتتاول هذه الحقيبة التدريبية " إلكترونيات القوى (عملي) " لمتدربي قسم" إلكترونيات صناعية وتحكم " للكليات التقنية موضوعات حيوية تتتاول كيفية اكتساب المهارات اللازمة لهدا التخصص.

والإدارة العامة لتصميم وتطوير المناهج وهي تضع بين يديك هذه الحقيبة التدريبية تأمل من الله عز وجل أن تسهم بشكل مباشـر پٌ تأصيل المهارات الضرورية اللازمة، بأسلوب مبسط يخلو من التعقيد ، وبالاستعانة بالتطبيقات والأشكال التي تدعم عملية اكتسـاب هذه المهارات.

والله نسأل أن يوفق القائمين على إعدادها والمستفيدين منها لما يحبه ويرضاه، إنه سميع مجيب الدعاء.

تُههيل

تعتبر إلكترونيات القوى الأداة المنفذة لمعظم التطبيقات الصناعية وقد تم التقدم الهائل بإلكترونيـات القوى مستتـدا ومرتبطا بالتقدم الذي حدث يِّ المعالجات الدقيقـة حيـث قــد تم اسـتخخدام التتحكم الرقهـي بديـلا عن بعض طـرق التتحكم التقليديـة وأيضـا قـد أدى هــنا الاسـتخدام إلى تقليـل حـجم دوائر التحـكم التماثلية التي قد اعتاد استخدامها ِپْ عملية التحكـم.

وتم أيضـا اسـتخخدام بعض العناصـر الإلكترونيـة الحـديثـة مثـل الموسـفت MOSFET و الترانزسـتور ذات البوابة المعزولة ثنائيـة القطبيـة IGBT كبـديل عـن اسـتخخدام الثايرسـتور پِ دوائر القـدرة المنخفضـة والمتوسـطة ولكـن مـازال الثايرسـتور مسـتخدمـا يِ هــنه القـدرات السـابقة ويسـتخدم الثايرسـتور أيضـا يِّ الدوائر ذات القدرات العـالية ولا بديل عنـه هٌِ هذه القدرات حتى هذه اللحظة ولكن مـن المتوقـع أن يتواجــ البديل عنه حيث مـجال البـحث والتقدم العلمي ليس لـه حدود.

تستخدم إلكترونيات القوى يِّ بعض المجالات العملية الهامـة مثـل عمليـة توحيـد جهـد الموجـة المتتـاوبـة
 متتاوبة يمـكن التحكم أيضا يِّ قيمتها ويعتبر مجـال التتحكم مٌِ سـرعة المحرركـات المسـتمرة والمتتاوبـة من أهم التطبيقات الصناعية لإلكترونيـات القوى.

الهـدف الرئيسـي مـن أعـداد هـذه الحقيبـة هـو الدراسـة العمليـة للعناصـر الإلكترونيـة المسـتخخدمة وِ
 الموحـدات المحكوهـة وهقطعـات التيـار المسـتمر والعـواكس وأيضـا الدراســة العمليـة لـبعض دوايـر إثـــال الثايرسـتور والثلازمـة لقـدح الثايرسـتور. ولابـد مـن مقارنـة النتـائج العمليـة الـتي قــد تم الحصـول عليهـا هـع المع النتائج النظرية حتى يتمـكن المتدرب من الإلمام بمادة إلكترونيـات القوى من النـاحية العملية والنظرية.

إلكتزونيـات القوى (عملي)

خواص الثايرستور

خولاع الثّايرستوّور

من خلال هذه التجربة:
○ يتعلم المتدرب الطريقة العملية المستعملة للحصول على خواص الثايرستور ○ يعرف المتدرب من خلال الخواص حالة الثايرستور ما إذا كان موصـلاً أو مفصولاً.

عناصر التجبربة:

$$
\begin{aligned}
& \text { - مصدر جهد متردد مـ محول خافض للجهد } \\
& \text {-وحدة العناصر التي تحتوي على ثايرستور } \\
& \text {-وحدة التحكم هِ زاوية الإشعال أحادية الوجه } \\
& \text { - حمل مقاومة } \\
& \text {-مقاومة } 1 \text { - } \\
& \text { - راسم الذبذبات (أسيلوسكوب) ثنائي القناة } \\
& \text { - جهاز قياس التيار } \\
& \text { - أسـلاك التوصيل }
\end{aligned}
$$

ا - وصل الدائرة كما هو موضح يٌ الشكل (1 -) مـع مراعاة عدم التشغيل أثناء التوصيل.

الثكل (1-1): دائرة توصيل الثايرستور

- Y
 ع - أضغط على الزر (X-Y) للحصول على خواص الثايرستور على شاشة الأسيلوسكوب

المربعات المرفقة يٌْ الشكل (Y- (Y) مع تسجيل المقياس المستخدم

1 - 1 أدر زر تفيير زاوية الإشثعال بالتدريج على وحـدة التتحكم مـع مراعاة أن لا يتعدى التيـار المار
 الثايرستور و سـجل مـلاحظاتك
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\text { الشـكل (} 1 \text { (Y): خواص الثايرسـتور }
$$

مـاذا يحصـل للخـواص عنـدمـا يــون زر تفـيير زاويـة الإشــعال يخ وضـع "أقصـى الـيمـين"؟ هـل الثايرستور بِن حالة التوصيل أو القطع؟
\qquad
\qquad
\qquad
\qquad
1 الثايرستور ِِْ حالة التوصيل أو القطع؟
\qquad
\qquad
\qquad
\qquad

- 9
\qquad
\qquad
\qquad

إلكتزونيات القوى (عملي)

خواص الترياك

خواص الآّزِــــكـ

من خلال هذه التجربة:
○ يتعلم المتدرب الطريقة العملية المستعملة للحصول على خواص الترياك
○ يعرف المتدرب من خلال الخواص حالة الترياك ما إذا كان موصلاً أو مفصولاً.

عناصر التجربة:

- مصدر جهـد متردد مـع محول خافض للجهـد -وحدة العناصر التي تحتوي على ترياك - وحدة التحكـ هِّ زاوية الإشعال أحادية الوجهـ -
- مقاومة 1 -
- راسم الذبذبات (أسيلوسكوب) ثنائي القناة - جهاز قياس التيار -أسـلاك التوصيل

1

1

الشكل (Y - (): دائرة توصيل الترياك

- Y「 - أضبط مقياس الزمن و الجهد للقناتين مع ضغط على الزر (INV) لقلب موجة القناة Y ع - أضغط على الزر (X-Y) للحصول على خواص الترياك على شاشـة الأسيلوسـكوب 0 - أضغط على مفتاح تشغيل المصدر و ارســم الشــكل الـذي تـراه على شـاشــة الراسـم علـى ورقـة المربعات المرفقة يفِ الشكل (Y-Y) مع تسـجيل المقياس المستخدم
7 - أدر زر تغيير زاوية الإشـعال بالتدريج على وحـدة التتحكم مـع مراعـاة أن لا يتعدى التيـار المـار بالدائرة القيمة العظمى التي يتحملها الترياك، و لاحظ التفير الذي يطرأ على خواص الترياك و سـجل مـلاحظاتك
\qquad
\qquad
\qquad
\qquad

الشـكـل (Y-Y): خواص التريـاك

- V التريالك ـِશْ حالة التوصيل أو القطع؟
\qquad
\qquad
\qquad
 الترياك थٌ حالة التوصيل أو القطع؟
\qquad
\qquad
\qquad
9 - 9
\qquad
\qquad
\qquad
\qquad

إلكترونيـاتالقوى (عملي)

دائرة إثشال الثايرستور

من خلال هذه التجربة: ○ يتعلم المتدرب الطريقة العملية المستخدمة لإشثعال الثايرستور ○ يصمّم المتدرب دائرة إثـعال الثايرستور

عناصر التجربة:
(*) 220: 12 V محول خافض للجهد (0.5 W max.) 12 V -

TIC ثايرستور 106 100 k 1N4001 دايود -- مكثف م 0.33 م - مقاومة - مقاومتان 1 k

2N2646 (UJT) ترانزستور وحيد الوصلة -- راسم الذبذبات (أسيلوسكوب) ثنائي القناة Test Board لوحة الاختبار -- أسـلاك التوصيل

ا. وصل الدائرة كمـا هو موضح ِوْ الشـكل (ץ - ا) مع مراعاة عدم التشغيل أثناء التوصيل.

الشكل (؟ - ا): دائرة إثنعال الثايرستور بالترانزستور وحيد الوصلة
Y. Y. وصل القناة الأولى و الثانيـة لـلأسيلوسـكوب على أطراف الملف الثانوي للمححول و اللمبة على الترتيب
 مـلاحظاتك
\qquad
\qquad
\qquad
\qquad
غ. باسـتعمال الأسيلوســكـوب, ارسـم شــكل أمـواج الجهود V المتغيرة ${ }^{2}$ وِ منتصف و أقصى وضع.

الشكل (Y المنتصف

تقنية الإلكترونيات والتحكم (عملي)

دائرة إشعال الترياك

الأهداف:
 من خلال هذه التجرية:
 ○ يتعلم المتدرب الطريقة العهلية المستتخدمة لإشعـال الترياك ○ يصـمـ المتدرب دوائر إشــال الترياك

عنـاصر التجربةة :
-

- 1

الشكل (ع -): دائرة إثععال الترياك بواسطة الدياك

- Y وصـل القنـاة الأولى و الثانيـة لـلأسيلوســكوب على أطـراف المصــدر و اللمبـة علـى الترتيـب مـع

مراعاة تقليل قيمـة الإشـارة الداخلة إلى كل قناة باستعهـال المسبـار (Probe) الملائم.
「 -
 الراسـم ثم سـجل مـلاحظاتك
\qquad
\qquad
\qquad
\qquad
0 المتغيرة VR يِّ منتصف و أقصى وضع.

Y Y الك
دائرة إشهـال التزيـاك

$V_{S},[V]$

$\omega t,\left[{ }^{\circ}\right]$

$\omega t,\left[{ }^{0}\right]$

Y Y الك
دائرة إشهـال التزيـاك

$V_{\mathrm{L}},[\mathrm{V}]$

الشكل (\& -

إلكترونيـاتالقوى (عملي)

موحد نصف موجة محكوم أحادي الوجاه مع

حمل مادي

من خلال هذه التتجربة يتعلم المتدرب طريقـة توصـيل واختبـار موحـد نصـف موجـة محكـوم مـع حهـل

- مقاومة 1 -
- راسم الذبذبات (أسيلوسـكوب) ثـائي القناة - جهاز قياس التيار - جهاز قيـاس الجهد - أسـلاك التوصيل

1 - وصل الدائرة كما هو موضح يٌٌ الثكل (0 -) مع مراعاة عدم التثغغيل أثناء التوصيل.

الشكل (0 - 1): دائرة توصيل موحد نصض موجة محكوم أحادي الوجه بالحمل المادي r - وصـل القنـاة الأولى و الثانيـة للأسيلوســكوب على أطـراف الثايرستور و المقاومـة 1Ω على الترتيب كما هو موضح يٌٌ الشكل (0 - ا) مع قلب إثشارة القناة الثانية

 للتأكد أن قيمته لا تتعدى القيمة العظمى التي يتحملها الثايرستور
 سـجل قراءات جهاز قياس الجهد يٌٌ الخانات الخاصة بها

${ }^{\circ} 11$.	${ }^{1} 10$.	O1r.	oq.	${ }^{\circ} 7$.	${ }^{\circ} \mathrm{r}$.	\bigcirc.	زاوية الإشعال (1
							$\begin{aligned} & \text { العملية لـ القيم } \\ & V_{\text {لم }} \end{aligned}$

1 - أرسـم منـحنى تغير القيمـة المتوسـطة لجهـد الحمـل Vdc بدلالـة زاويـة الإشـعال α مـع توضـيح المقيـاس المستعمـل بٌِ الرسـم

الشكل (0 (Y): منحنى تغير القيمة المتوسطة لجهد الحمل بدلالة زاوية الإشعال
V الذي يغذي الحمل المادي أوجد قيم Vdc المقابلـة لـنفس زوايـا الإشـعـال الموضـحة يٌ الجـدول السـابق ثـم سـجلها يٌ الجدول التالي:

${ }^{\circ} 11$.	${ }^{\circ} 10$.	orr.	09.	07.	${ }^{\circ} \mathrm{r}$.	\bigcirc.	زاوية الإشعال (م)

\square V \downarrow

- 9 - إذا كانت إجابة السؤال (^) هي لا، اذكر سبب الفرق بينهما.
\qquad
\qquad
- - - بالحفـاظ علـى نفـس توصـيـلات القانتـان لـلأسيلوســكـوب الموضـحة يِّ الثــكـل (ץ - ا)، ارســم شـكل موجة تيار الحمل و موجة الجهد على طرِوْ الثايرسـتور ٌِِ الحالـة الـتي يكـون فيهـا α تسـاوي صفر و • 9 درجة هـع توضيح المقياس المستعمل وٌِ الرسـم

11 -بعد الانتهاء من الرسـم، افصل المصدر ثم وصـل القـانتـين للأسيلوســكـوب إلى الملف الثـانوي لمحـول المصدر و مقاومة الحمل

IY - IY
 الرسـم.

الشك (0 -7): شـكل الجهد على طرٌِْ المصدر و الحمل وِ حالة α تسـاوي • 9 درجة
پا -مـن موجة جهد المصـدر, أوجد قيمـتي جهل و تردد المصـدر
\qquad
\qquad
\qquad
\qquad
عا -من موجة جهد الحمل، أوجد قيمة زاوية التوصيل
\qquad
\qquad
\qquad
\qquad

إلكترونياتالقوى (علي)

موحد نصف موجة محكوم أحادي الوجه مع

 حمل حثي

من خلال هذه التجربة يتعلم المتدرب طريقـة توصـيل واختبـار موحـد نصـف موجـة محكـوم مـع حهـل

- مقاومة 1 1
- راسـم الذبذبات (أسيلوسـكوب) ثـائي القناة
- جهاز قياس التيار
- جهاز قياس الجهد
- أسـلاك التوصيل

الشكل (7 - (1): دائرة توصيل موحد نصف موجة محكوم أحادي الوجه بالحمل الحثي r - وصـل القـنـاة الأولى و الثانيـة للأسيلوســكوب على أطـراف الثايرستور و المقاومـة 1Ω على الترتيب كما هو موضح يٌ الشكل (7 - (1) مع قلب إشارة القناة الثانية r - † -
 للتأكد أن قيمته لا تتعدى القيمة العظمى التي يتحملها الثايرستور
 سـجل قراءات جهاز قياس الجهد يٌ الخانات الخاصة بها

${ }^{\circ} 11$.	${ }^{\circ} 10$.	${ }^{\circ} \mathrm{Ir}$.	-9.	${ }^{\circ} \mathrm{7}$.	${ }^{\circ} \mathrm{r}$.	\bigcirc.	زاوية الإشعال (ه)
							القيم العملية لـ لـ

7 - بالحفاظ على نفس توصيـلات القانتان لـلأسيلوســكوب المبينـة وِّ الشـكـل (7 -)، ارسـم شــكل
 - 9 درجة مـع توضيح المقياس المستعمل وٌِ الرسـم

الشَكل (Y-Y): شكل تيار الحمل و الجهد على طرٌِْ الثايرستور ٌِِ حالة α تسـاوي صفر درجة

V المصدر و مقاومة الحمل

1 - وصل المصدر مرة أخرى واضبط مقياس الزمن و الجهد ثم ارسـم شـكل الجهد على طـرٌِ المصـدر

الشكل (7 -) : شكل الجهد على طرِّ المصدر و الحمل فِّ حالة α تسـاوي صفر درجة

$$
9 \text { - من موجة جهد المصدر, أوجد قيمتي جهد و تردد المصـدر }
$$

\qquad
\qquad
\qquad
\qquad

- - -من موجة جهد الحمل, أوجد قيمتي زاوية الإطفاء و التوصيل
\qquad
\qquad
\qquad
\qquad

إلكترونيـات القوى (عملي)

موحد نصف موجة محكوم أحادي الوجه
مع حمل حثي و دايود حذافة

من خـلال هذه التـجربة يتعلم المتدرب طريقـة توصـيل واختبـار موحـد نصـف موجـة محـكوم هـع حهـل
حثي و دايود حدافه.

عناصر التجربة:

- مصدر متردد مع محول خافض للجهد
-وحدة العناصر التي تحتوي على ثايرستور و دايود (حدافه) - وحدة التحكم پِ زاوية الإشعال أحادية الوجه - حمل مقاومة 200 100 mH حمل حثي --مقاومة 1 م - راسـم الذبذبات (أسيلوسـكوب) ثـائي القناة - جهاز قياس التيار - جهاز قياس الجهد -أسـلاك التوصيل

خطوات تنفيذ التجربة:

الشكل (- -): دائرة توصيل موحد نصف موجة محكوم أحادي الوجه بالحمل الحثي و دايود حذافة个 - وصل القناة الأولى و الثانية للأسيلوسـكوب على أطراف الثايرسـتور و المقاومـة 1Ω على الترتيب

 للتأكـد أن قيمته لا تتعدى القيمة العظمى التي يتحملها الثايرستور 0 سـجل قراءات جهاز قياس الجهد يٌٌ الخانات الخاصة بها

${ }^{\circ} 11$.	${ }^{\circ} 10$.	OTr.	-9.	${ }^{\circ} 7$.	${ }^{\circ} \mathrm{r}$.	\bigcirc.	زاوية الإشـعال (م)

هل القيــة المتوسطة لجهد الحمل ازدادت أو قلت مع إضافة دايود حذافة؟
\qquad
\qquad

- V
 مع توضيح المقياس المستتعهل ٌِْ الرسـم

^ - بعد الانتهاء من الرسم، افصل المصدر ثم وصل القانتان للأسيلوسكوب إلى الملف الثانوي لمحـول المصدر و مقاومة الحمل

9 - وصـل المصـدر هـرة أخـرى و اضـبط مقيـاس الـزمن و الجهـد ثم ارسـم شــكـل الجهـد على طـرِوْ
 المستعمل يٌْ الرسمـ

الشكل (

الشـكل (0- v): شـكل الجهد على طرٌِ المصدر و الحمل وِ حالة α تساوي • 9 درجة

- - مـن موجة جهد المصدر, أوجد قيمتي جهد و تردد المصدر
\qquad
\qquad
\qquad
\qquad

$$
11 \text { - من موجة جهد الحمل, أوجد قيمـة زاوية التوصيل }
$$

\qquad
\qquad
\qquad
\qquad

إلكتزونياتا القوى (عملي)

موحد موجة كاملة محكوم كليًا أحادي الوجه
مـ حمل مادي

عنـاصر التجربةة:

- مصدر متردد مـع محول خافض للجهد -وحدة العناصر التي تحتوي على أربعة ثايرستورات - وحدة التحكم وِ زاوية الإشعال أحادية الوجه - حمل مقاومة 200 -
- مقاومة 1 1
- راسـم الذبذبات (أسيلوسـكوب) ثـائي القناة - جهاز قياس الجهد
- أسـلاك التوصيل

1 - وصل الدائرة كما هو موضح يٌ الشكل (1 - ا) مع مراعاة عدم التثغيل أثنـاء التوصيل.

الشكل (1 - ا): دائرة توصيل موحد موجة كاملة محكوم كليًا أحادي الوجه بالحمل المادي
ץ - وصـل القنــة الأولى و الثانيـة للأسيلوسـكوب على أطراف الثايرستور و المقاومة 1Ω على الترتيب كما هو موضح يٌٌ الشكل (1 - -) مع قلب إشارة القناة الأولى. r - †
 سـجل قراءات جهاز قياس الجهد وٌِ الخانات الخاصة بها

${ }^{\circ} 11$.	${ }^{1} 10$.	OTr.	-9.	${ }^{\circ} 7$.	${ }^{\circ} \mathrm{r}$.	\bigcirc.	زاوية الإشعال ()
							$\begin{aligned} & \text { العملية لـ القيم } \\ & \mathrm{V}_{\text {dc }} \end{aligned}$

0 - باستتعمال قانون القيمة المتوسطة لجهد الحمل يوْ حالة موحد موجة كاملة محكـوم كليـًا أحادي
 السـابق ثم سـجلها ـٌِ الجـدول التالي:

${ }^{\circ} 11$.	${ }^{\circ} 10$.	OTr.	09.	${ }^{\circ} 7$.	${ }^{\circ} \mathrm{r}$.	\bigcirc.	زاوية الإشعـال (ه)
							$\begin{gathered} \text { النظرية لـ لـ } ل \text { لقيم } \\ \text { V } \end{gathered}$

$\square \searrow$
نعمى
7 - هل نتائج الفقرة (乏) هي نفسها نتائج الفقرة (0)؟ - V
\qquad
\qquad
1 - بالحفـاظ علـى نفـس توصـيـلات القانتـان للأسيلوســكـوب الموضـحة يِن الثــكـل (1 - ا)، ارســم

9 - بعد الانتهاء من الرسم، افصل المصـدر ثم وصـل القانتـان للأسيلوســكوب إلى الملف الثانوي لمحـول المصدر و هقاومة الحمل

- - -وصل المصدر مرة أخرى و اضبط مقياس الزمن و الجهد ثم ارسـم شـكل الجهد على طرٌِ المصـدر
 الرسـم.

$$
11 \text {-من موجة جهد المصدر, أوجد قيمتي جهد و تردد المصـدر }
$$

\qquad
\qquad
\qquad
\qquad
IY - من موجة جهد الحمل، أوجد قيمـة زاوية التوصيل
\qquad
\qquad
\qquad
\qquad

إلكتزونياتالقوى (عملي)

موحل موجة كاملة هـحكوم كليًا هـع حمل حثي

من خلال هذه التجربة يتعلم المتدرب طريقة توصيل واختبار موحد موجـة كاملة محكوم كليًا مـع حمل حثي.

عناصر التجربة:

- مصدر متردد مع محول خافض للجهد - وحدة العناصر التي تحتوي على أربعة ثايرستورات - وحدة التحكم هِ زاوية الإشعال أحادية الوجه - حمل مقاومة 200Ω حمد
- 100 mH حمل حثي
- مقاومة 1 -
- راسم الذبذبات (أسيلوسكوب) ثنائي القناة - جهاز قياس الجهد
- أسـلاك التوصيل

1 - وصل الدائرة كما هو موضح هٌِ الشكل (9 - ا) مع مراعاة عدم التشغيل أثناء التوصيل.

الشكل (9 - ا): دائرة توصيل موحد موجة كاملة محكوم كليًا أحادي الوجه بالحمل الحثي
ץ - وصـل القنـاة الأولى و الثانيـة للأسيلوســكوب على أطـراف الثايرستـور و المقاومـة 1 على الترتيب
كهـا هو مبين يِّ الشكل (9 - ا مع قلب إشارة القناة الأولى.

سـجل قراءات جهاز قياس الجهد هٌِ الخانات الخاصة بها

${ }^{\circ} 11$.	${ }^{\circ} 10$.	orr.	-9.	${ }^{\circ} 7$.	${ }^{\circ} \mathrm{r}$.	\bigcirc.	زاوية الإشعال ()
							القيم العملية لـ لـ

0 - بالحفاظ على نفس توصيـلات القانتان لـلأسيلوســكوب المبينـة يِّ الشـكـل (9 - () ، ارسـم شــكل موجة تيار الحمل و موجة الجهد على طرٌِْ الثايرستور پِ الحالة التي يكون فيهـا α تســاوي صفر و - 9 درجة هـع توضيح المقياس المستعمل قِّ الرسـم

$\mathrm{V}_{\mathrm{T}},[\mathrm{V}]$

$\omega \mathrm{t},\left[{ }^{0}\right]$

7 - بعد الانتهاء مـن الرسـم، افصل المصدر ثم وصـل القانتـان لـلأسـيلوســكـوب إلى الملف الثانوي لمحـول المصـدر و مقاومـة الحمل

V - وصل المصـدر مـرة أخرى و اضبط مقيـاس الزهـن و الجهد ثـم ارسـم شـكـل الجهد على طْ المصـدر و الحـهـل وِّ الحـالـة الـتي يـكـون فيهـا α تســاوي صـفر و • 9 درجـة هـع توضــيح المقيـاس المسـتتعمل وِ الـرسـم.

^ - من موجة جهد المصدر, أوجد قيمتي جهد و تردد المصـدر

9 - من موجة جهد الحمل, أوجد قيمتي زاوية الإطفاء و التوصيل
\qquad
\qquad

فيـاسـات وأجهزة (عملي)

موحد موجة كاملة محكوم كليًا أحادي الوجه هـع حمل حثي و دايود حدافه

من خلال هذه التجربة يتعلم المتدرب طريقة توصيل واختبار موحد موجـة كاملـة محكوم كليًا مـع حمل حثي و دايود حدافها.

- مصدر متردد مع محول خافض للجهد -وحدة العناصر التي تحتوي على أربعة ثايرستورات و دايود (حدافهـ) - وحدة التحكم هِّ زاوية الإشعال أحادية الوجه - حمل مقاومة 200 -- 100 mH حمل حثي - مقاومة 1 -- راسم الذبذبات (أسيلوسكوب) ثنائي القناة - جهاز قياس الجهد - أسـلاك التوصيل

1 - وصل الدائرة كما هو موضح پٌ الشكل (• - -) مـع مراعاة عدم التشغيل أثناء التوصيل.

الشكل (• - -): دائرة توصيل موحد موجة كاملة محكوم كليًا أحادي الوجه بالحمل الحثي ودايود حذافة

Y - Y وصل القنـاة الأولى و الثانيـة للأسيلوســكوب على أطـراف الثايرستـور و المقاومـة 1Ω على الترتيب
 r - ض
 ستجل قراءات جهاز قياس الجهد يٌْ الخانات الخاصة بها

${ }^{\circ} 11$.	${ }^{1} 10$.	OT.	-9.	${ }^{\circ} 7$.	${ }^{\circ} \mathrm{Y}$.	\bigcirc.	زاوية الإشعال ()
							القيم العملية لـ لـ

0 - هل القيمة المتوسطة لجهد الحمل ازدادت أو قلت مع إضـافة دايود حذافة؟

7 - بإلحفـاظ علـى تفـس توصـيـلات القانتـان لـلأسيلوســكوب الموضـحة يٌ الشــكل (• - ا)، ارســم شـكل موجة تيار الحـل و موجة الجهد علىى طـرِوْ الثايرسـتور ِوْ حالـة α تسـاوي صـر و و • 9 درجـة مع توضيح المقياس المستعمل ٌِ الرسـم

الشكل (• -

V المصدر و مقاومة الحمل

1 - 1 - وصل المصدر مرة أخرى و اضبط مقيـس الزمن و الجهد ثم ارسـم شـكل الجهد على طرِوْ المصــر
 الرسم

$$
9 \text { - من موجة جهد المصـدر, أوجد قيمتي جهل و تردد المصـدر }
$$

\qquad
\qquad
\qquad
\qquad

- - من موجة جهد الحمل, أوجد قيمة زاوية التوصيل
\qquad
\qquad
\qquad
\qquad

إلكتزونيات القوى (عملي)

موحل موجة كاملة نصف محصكوم هـع حمل

الشكل (1 - ا): دائرة توصيل موحد موجة كاملة نصف محكوم أحادي الوجاء بالحمل المادي

Y - وصـل القنـاة الأولى و الثانيـة لـلأسيلوســكوب علـى أطـراف الثايرسـتور و المقاوهـة 1Ω علـى الترتيـب
「 - ضع جهاز قياس الجهد پِو وضع DC وذلك لقياس القيمة المتوسطة لجهد الحمل ع - قم بتفيير وضع زر التتحكم وِّ زاويـة الإثــعال للحصـول على القـيم الموضـحة وِّ الجـدول التـالي ثـم سـجل قراءات جهاز قياس الجهد يٌِ الخانات الخاصة بها

${ }^{\circ} 11 /$	${ }^{\circ} 10$.	O/r.	09.	${ }^{\circ} 7$.	${ }^{\circ} \mathrm{r}$.	\bigcirc.	زاوية الإشـعال (a)

0 - باستتعمال قانون القيمة المتوسطة لجهد الحمل يِّ حالة موحد موجة كاملة نصـف محكـوم أحـادي الوجـه الـذي يغـذي الحهـل المـادي أوجـد قيمه Vdc المقابلـة لـنفس زوايـا الإشــعال الموضـحـة يِّ الجـدول السـابق ثم سـجلها يٌِ الجـدول التالي:

${ }^{\circ} 11$.	${ }^{\circ} 10$.	OMr.	$\bigcirc 9$.	${ }^{\circ} 7$.	${ }^{\circ} \mathrm{r}$.	\bigcirc.	زاوية الإشعال (a)
							$\begin{gathered} \text { النظرية لـ القيم } \\ \text { لـ } \end{gathered}$

\forall
نعم

7 - هل نتائج الفقرة (乏) هي نفسها نتائج الفقرة (0)؟

- V

1 - بالحفـاظ علـى تفس توصـيـلات القانتـان لـلأسيلوســكوب الموضتحة يٌِ الشــكل (1 - ا)، ارســم
 صفر و • 9 درجة مـع توضيح المقياس المستعمل وِّ الرسـم

 9 - بعد الانتهاء من الرسم، افصل المصدر ثم وصـل القانتـان لـلأسيلوســكـوب إلى الملف الثانوي لمحـول

المصدر و مقاومة الحمل

- - - وصل المصدر مرة أخرى واضبط مقيـاس الزمن و الجهد ثم ارسـم شـكل الجهد على طـرٌِ المصــر
 الرسم.

$\omega t,\left[{ }^{\circ}\right]$
$v_{L},(M)$

$$
11 \text {-من موجة جهد المصدر, أوجد قيمتي جهد و تردد المصـدر }
$$

\qquad
\qquad
\qquad
\qquad
MY -من موجة جهد الحمل، أوجد قيمـة زاوية التوصيل
\qquad
\qquad
\qquad
\qquad
\qquad

إلكترونيـات القوى (عملي)

موحلد موجة كاملة نصف هححكوم هـع

حمل حثي

عناصر التجربة:

- مصدر متردد مع محول خافض للجهد - وحدة العناصر التي تحتوي على ثايرستورين و دايودين - وحدة التحكم هِّ زاوية الإشعال أحادية الوجه - حمل مقاومة 200Ω حم - 100 mH حمل حثي - مقاومة 1 -- راسم الذبذبات (أسيلوسكوب) ثنائي القناة - جهاز قياس الجهد - أسـلاك التوصيل

1

الشكل (Y ا -): دائرة توصيل موحد موجة كاملة نصف محكوم أحادي الوجه بالحمل الحثي
Y - Y وصـل القنـاة الأولى و الثانيـة لـلأسيلوســكوب علـى أطـراف الثايرسـتور و المقاومـة 1Ω علـى الترتيـب كمـا هو مبـين يٌٌ الشكل (「 - ضع جهاز فياس الجهد يِّ وضع DC وذلك لقياس القيمة المتوسطة لجهد الحمل
 سـجل قراءات جهاز قياس الجهد يٌ الخانات الخاصة بها

${ }^{\circ} 11$.	${ }^{\circ} 10$.	OMr.	09.	${ }^{\circ} 7$.	${ }^{\circ} \mathrm{r}$.	\bigcirc.	زاوية الإشـعال (م)
							القيم العملية لـ

 - 9 درجة مـع توضيح المقياس المستعمل بِّ الرسـم

7 - بعد الانتهاء مـن الرسم، افصل المصدر ثم وصـل القانتـان للأسيلوســكوب إلى الملف الثانوي لمحـول المصدر و مقاومة الحمل

V V
 الرسم.

$$
1
$$

\qquad
\qquad
\qquad
9 - من موجة جهد الحمل, أوجد قيمتي زاوية الإطفاء و التوصيل
\qquad
\qquad
\qquad
\qquad

إلكترونيات القوى (علمي)

مقطع التيـار المستتمر الخافض هـع حمل هـادي

من خـلال هذه التجربة يتعلم المتدرب طريقة :
○ توصيل واختبار مقطع التيار المستمر الخافض المتصل بالحمل المادي
○ حساب القيم المتوسطة لجهد الحمل

عناصر التجربة:
15 V مصدر جهد مستمر -

- وحدة العناصر التي تحتوي على ترانزستور القوى
 - حمل مقاومة 20 -
- مقاومة 1 -- راسم الذبذبات (أسيلوسكوب) ثنائي القناة - جهاز قياس الجهد - أسـلاك التوصيل

الشكل (٪ - ا): دائرة توصيل مقطع التيار المستمـر الخافض بالحمل المادي
Y - وصل القناة الأولى و الثانية لـلأسيلوسـكوب على أطـراف الحمـل والمقاومـة 1 علـى الترتيـب كهـا
「 - ض
 التالي ثم سـجل قراءات جهاز قياس الجهد يٌ الخانات الخاصة بها

1	\cdot, \wedge	$\cdot, 7$	$\cdot \mathrm{O}$	\cdot, ¢	$\cdot,{ }^{\text {r }}$	نسبة التشغيل (D)
						القيم العملية لـ V_{0}

0
\qquad
\qquad
\qquad
7 - ارسـم منحنى تفير القيهـة المتوسـطة لجهـد الحهـل Vo بدلالـة نسـبة التشـغيل D مـع توضـيح المقيـاس المستعمل ِحْ الرسـم

D
الشكل (Y- IY): منحنى تغير القيمة المتوسطة لجهد الحمل Vo بدلالة نسبة التشغيل D
V المتوسطة لجهد الحمل، ثم سـجل النتائج پٌِ الجدول التالي:

1	\bullet, \wedge	$\bullet, 7$	$\cdot{ }^{\circ}$	$\cdot, 乞$	\cdot, r	نسبة التشغيل (D)

^ - قارن بين نتائج السـؤالـين ع و v

 الرسم

إلكتزونيات القوى (علمي)

هقطع التيـار المستهـر الخافض هـع حمل حثي
,

من خلال هذه التجربة يتعلم المتدرب طريقة:
○ توصيل واختبار مقطع التيار المستمر الخافض المتصل بالحمل الحثي
○ حسـاب القيم المتوسطة لجهد الحمل

عناصر التجربة:
15 V مصسدر جهد مستمر -
-وحدة العناصر التي تحتوي على ترانزستور القوى و دايود (الحدافهه) - وحدة إثعال الترانزستور التي تولد إثشارة مربعة ذات تردد ثابت و نسبة التشغيل متفير - حمل مقاومة 20 ح - ملف 100 mH - ثلالث مقاومات 1 -- راسم الذبذبات (أسيلوسكوب) ثنائي القناة - جهاز قياس الجهد - أسـلاك التوصيل

خطوات تنفيذ التجربة:

الشكل (عا - ا): دائرة توصيل مقطع التيار المستمـر الخافض بالحمل الحثي
Y - وصل القناة الأولى و الثانية لـلأسيلوسـكوب على أطراف المقاومـة 1 و الحهـل على الترتيـب كهـا

 التالي ثم سـجل قراءات جهاز قياس الجهد يٌ الخانات الخاصـي

1	\cdot •^	$\cdot, 7$	$\cdot{ }^{\circ}$		\cdot, Y	نسبة التشغيل (D)
						القيم العملية لـ V_{0}

0 - أوجـد القـيم النظريـة المقابلـة لـنفس قـيم D الموضـحة يِّ الجـدول السـابق باسـتعمـال قـانون القيهـة

1	\cdot, \wedge	$\cdot, 7$	$\cdot, 0$	\cdot, ¢	\cdot, Y	نسبة التشغيل (D)
						$\begin{gathered} \text { القيم النظرية } ل \text { لـ } \end{gathered}$

7 - 7
\qquad
\qquad
\qquad
V
 الرسـم

1
 الترانزستور على الترتيب ثم ارسـم شـكل الموجتـين عنـدمـا تـكـون نسـبـة التشـغيل D=0.5 مـع توضـيح المقياس المستعمل ِوِّل حالة.

t [s]

إلكترونيـات القوى (عملي)

بناء عاكس نصف قنطري أحادي الطور

من خلال هذه التجربة يتعلم المتدرب كيفية:
○ الحصول على موجة شبـه جيبية بجهد فعال 110 من دائرة عاكس نصـف قنطري أحـادي
12 V الطور الذي يتم تغذيته من مصدر مستــر قيمتـه
○ توليد النبضـات من دائرة مؤقت غير مستقر (IC 555)

عنـاصر التجربةة:

12 V مصدر جهد مستمر -
12/110 V محول رافع للجهد (TIP 41A) NPN و (TIP 42A) PNP عدد ץ ترانزستور أنواعهها -- دانـرة مؤقت غير مسـتقر المتـكونـة هـن: IC 555 ، مقاوهـة 100 k ، مقاوهـة 10 k ، مقاومـة
 - حمل مـادي قيمتـه

- مقاومة قيمتها
$2700 \mu \mathrm{~F}$ - دائرة مرشـح متكونة من ملف 1 - 1 و مكثف قطبي - راسـم الذبذبات (أسيلوسـكوب) ثـائي القناة - جهاز قياس الجهد

Test Board لوحة الاختبـار -- أسـالاك التوصيل

خطوات تنفيلذ التجربة:

1 - وصل الدائرة كهـا هو موضح يٌِ الشـكل (10 -) هـع مراعاة عدم التشغيل أثتاء التوصيل.

الشـكل (10 -) : دائرة عاكس نصف قنطري أحادي الطور

Y - أضف على طرِّ الملف الثانوي للمحول المقاومتين 200 و 1Ω الموصلتين على التوالي「 - وصل القناة الأولى و الثانيـة لـلأسيلوسـكوب على أطـراف المقاومـة 1Ω و مقاومـة الحهـل $\Omega 200$ ثـم

اضبط التردد عند القيمة 60 بواسطة المقاومة المتفيرة
ع - ارسـم موجتي القناتين مع توضيح المقياس المستعمل وِ الرسـم

t [s]
الشكل (10 10): موجة جهد الحمل بدلالة الزمن

الشكل (10 - 10): موجة تيـار الحمل بدلالة الزمن
 لجهد الحمل
\qquad
\qquad
7 - احذف من الدائرة المرشـح المتـكون من الملف 1 ب 1 و المكثف 2700 ثم ارسـم الثـكل النـاتج لموجة جهد الخرج $\mathrm{V}_{0}[\mathrm{~V}]$

t [s]
الشـكل (10-₹): موجة جهد الحمل بدلالة الزمن ِِح حالة عدم وجود المرشـح
\qquad
\qquad
\qquad
1 - 1
\qquad
\qquad

المحتووــات

Error! Bookmark not defined. مـلاحظات
VV الفهرس

```
    تقدر المؤسسـة العامة للتعليم الفني والتدريب المهني الدعم
المالي المقدم من شركة بي آيه إي سيستهز (العمليات) المحدودة
```

GOTEVOT appreciates the financial support provided by BAE SYSTEMS

BAE SYSTEMS

